
Efficient Bayesian Synthesis with Version Spaces

No Author Given

No Institute Given

Abstract. Programming-by-Example embraces program synthesis from
an incomplete specification: just a few examples. A program synthesizer
must therefore choose among many programs that satisfy the specifica-
tion, and traditional approaches—such as choosing the simplest program—
ignore much of the information present in the input examples. In this
work, we examine synthesis of regular expressions (regexes) from a few
positive examples as an exemplar of a synthesis problem considered hope-
lessly underconstrained. We show that learning (a restricted class of)
regexes from positive examples is possible using a Bayesian cost func-
tion, which takes into account not only the simplicity of a regex, but
also its fit to the examples.
The technical challenge with this approach is how to efficiently search
the space of all regexes to find one that minimizes the Bayesian cost.
To address this challenge, we (1) adapt version space algebra techniques
to enable use of the Bayesian cost function as a search objective, and
(2) develop an efficient search algorithm we dub guided version space
exploration (GVSE). We implement this approach in a synthesizer called
Regex+, and evaluate it on a corpus of 231 regex learning tasks with
human-generated examples. Our evaluation shows that Regex+ outper-
forms non-Bayesian baselines, and that GVSE can find optimal or near-
optimal solutions while exploring only a fraction of the version space.

1 Introduction

The task of program synthesis is to find a program satisfying a given specifica-
tion. Specifications, however, are often incomplete, leaving many candidate solu-
tions for the synthesizer to choose from. This is especially true in Programming-
by-Example, where the specification is given as a (typically small) set of input-
output examples, which merely showcase representative program behavior. How
should the synthesizer choose among the many candidate solutions?

A common option is to search for the shortest program [33,1,18], or to use
other metrics of program complexity, defined by probabilistic grammars [23,6].
Importantly, all these metrics are all purely syntactic: they take into account the
program, but not the specification; the specification is only used as a boolean
test to filter out unacceptable programs.

Such syntactic metrics are known to fall short when the synthesis problem is
severely underspecified [2]. As an example, consider the task of learning a regular
expression (regex) from positive examples, i.e. a set {s1, . . . , sn} of strings which
must be accepted by the regex. Independently of the examples, the regex that

2 No Author Given

accepts any string, .*, is a valid and simple solution, but is utterly unhelpful.
At the same time, we observe that humans are often able to guess meaningful
regexes from just a few positive examples, as long as the examples are informa-
tive. Intuitively, this requires extracting more information from the specification:
rather than just using it as a boolean test, we need a semantic objective function,
which balances the simplicity of a regex with its fit to the given examples.
Bayesian Synthesis. This intuition can be formalized using a Bayesian ap-
proach to program synthesis, where the objective is to find the program with the
highest posterior probability for the given specification. Although Bayesian pro-
gram synthesis has been explored in the past in restricted domains (e.g. [20,29]),
efficient algorithms for optimizing the posterior remain a challenge: existing tools
either use stochastic search, which is slow and unpredictable [20], or require ex-
plicitly enumerating all solutions before choosing the optimal one [29].
Efficient Search with Version Spaces. In this work, we propose a new search
algorithm for Bayesian synthesis based on version spaces [21,17,32], targeting
a restricted class of regexes, which we call format regexes. A version space is
a graph data structure that compactly represents all candidate solutions to a
synthesis problem. We observe that the structure of the version space allows us to
decompose the Bayesian cost of a problem into a sum of costs of its subproblems,
thereby reducing Bayesian synthesis to graph search.

Although version spaces are more compact than the search space they repre-
sent, their size still grows quickly with the number and length of examples. To
overcome this scalability challenge, we propose a new search algorithm we dub
guided version space exploration (GVSE). Unlike prior work, GVSE constructs
the version space on the fly, only exploring promising solutions. We present two
variants of the algorithm: (1) GVSE-A*, which uses an admissible heuristic to
guide the search and preserves the optimality guarantee; and (2) GVSE-Beam,
which gives up the optimality guarantee in exchange for more efficiency.
Regex+. We implement GVSE in Regex+, a regex synthesizer capable of
learning format regexes from only a few positive examples. We evaluate Regex+
on a new benchmark suite with 231 regex synthesis tasks with informative pos-
itive examples. We demonstrate the effectiveness of the Bayesian cost function
through a comparison with a syntactic cost function, as well as human learners.
We also compare the two variants of GVSE with naive version space search and
show that (1) GVSE-A* uses an order of magnitude less memory than naive
search, which allows it to solve one extra benchmark; and (2) GVSE-Beam fur-
ther reduces the synthesis time by over an order of magnitude, while staying
within 98% of the optimal cost.
Contributions. In summary, this paper contributes the following:
– A Bayesian cost function for learning regexes from positive examples.
– Guided version space exploration (GVSE), a new search algorithm that effi-

ciently explores version spaces to minimize a semantic cost function.
– Regex+, an implementation of GVSE that is able to learn format regexes

from informative positive examples, on average exceeding the accuracy of
human learners.

Efficient Bayesian Synthesis with Version Spaces 3

2 Overview

In this section we illustrate the three components of our approach—the Bayesian
cost function, version spaces for regular expressions, and guided version space
exploration—via a running example.

2.1 Bayesian Learning for Regular Expressions

Consider a user who wants to determine the format of student emails at their
university and provides the following two input strings to Regex+:

lpage@stanford.edu twoods@stanford.edu

There are infinitely many regexes that match these strings; how should we pick
the one (or the top k) that is most likely to describe the intended format?

In program synthesis, the most common approach to dealing with ambiguous
specifications is to return the shortest solution. This approach is a complete
non-starter for our problem, however: the shortest solution to almost any regex
synthesis problem is .*, which is not helpful to the user as it is overly general (it
permits all strings). On the other hand, aiming for the most specific regex that
matches our inputs—(lpage|twoods)@stanford.edu—would also be problematic, as
it does not generalize beyond the two strings at all.

The DSL of Format Regexes. Another common approach to dealing with
ambiguity is to restrict the target DSL (domain-specific language), i.e. the class
of regular expressions that the synthesizer is considering [28,12,17,32]. In this pa-
per we target the DSL of format regexes, which disallows arbitrary disjunctions,
but supports optionals and a fixed set of character classes. As such, a format
regex is a sequence of factors, each of which can be optional and contain either
literals or possibly repeated character classes.1

Restricting the DSL, however, does not by itself solve the problem of over-
and under-generalization. Assuming the default set of character classes in our
tool (which includes lower-, upper-, and mixed-case letters, digits, and alpha-
numerics, but does not include the . wildcard), respectively, the shortest2 and
the most specific solutions for our running example are:

[a-z]+@[a-z]+\.[a-z]+ (1)
(lpage)?(twoods)?@stanford\.edu (2)

Clearly, neither of these solutions is satisfactory.

1 The formal grammar for the DSL is given in Sec. 3.
2 Other solutions of the same length can be obtained by replacing [a-z] with [a-zA-Z]

or [a-zA-Z0-9].

4 No Author Given

Bayesian Inference. Our first key insight is that the over- and under-generaliza-
tion problem can be tackled by viewing the regex synthesis problem through the
lens of Bayesian inference. Given a set of input strings S, we can find the most
likely regex r that produced the strings by maximizing its posterior probability,
determined via the Bayes’ rule:

P (r | S) ∝ P (r) · P (S | r).

Here P (r) is the prior probability of the regex r, i.e. the probability of selecting
r from the space of all expressions in the DSL; a natural prior assigns higher
probabilities to programs that are shorter and use more common constructs. The
second term, P (S | r), is the likelihood of the inputs given the regex r, i.e. the
probability of generating the inputs by sampling strings accepted by r. Likelihood
is higher for more specific regexes, since there are fewer alternative strings that
could have been generated instead of S. Therefore, the Bayesian formulation
forces us to trade-off the simplicity of the regex against its specificity.

In our running example, the regex with the highest posterior probability is:

[a-z]+@stanford\.edu (3)

which is the intended solution. To give some intuition for why the regex (3) is
more optimal than (1) and (2), we will now discuss how we compute the prior
and likelihood terms.
Computing the Prior. A common way to describe a prior over expressions [23,6]
is to use a probabilistic context-free grammar (PCFG), which essentially assigns
a fixed probability to each construct that makes up a regex. So, for example,

P ([a-z]+@stanford\.edu) = P (+) · P ([a-z]) · P |@stanford.edu|
c

where Pc is the probability of an individual character. With a PCFG-based
prior, we expect P ([a-z]+) > P ((lpage)?(twoods)?), since the latter expression
is both longer and uses the less common optional constructs. Hence, it is not
surprising that the prior component gives the intended solution (3) an edge over
the candidate (2).
Computing the Likelihood. Likelihood of a string s under a regex r can be
computed using the formalism of stochastic regular expressions (SREs) [30,25].
Let us illustrate this calculation using the string s = stanford.edu and two dif-
ferent regexes: r1 = stanford\.edu, the suffix of (3), and r2 = [a-z]+\.[a-z]+, the
suffix of (1). Clearly, r1 generates s with probability 1, as it is the only string
accepted by the regex. Instead, for r2 the likelihood can be computed as

P (s | r2) = P (stanford | [a-z]+) · P (. | \.) · P (edu | [a-z]+)

=
(p

26

)8

(1− p) · 1 ·
(p

26

)3

(1− p) where 0 < p < 1

Intuitively, both occurrences of the factor [a-z]+ have to repeatedly make a choice
between generating one of the 26 lowercase letters with probability p/26, or

Efficient Bayesian Synthesis with Version Spaces 5

l p a g e @ s t a n f o r d . e d u

o
w

d
o

s
@

t

e
d
u

…

(lpage)?

(twoods)?

33 + 1 + 1

37
+ 1

+ 1

6 + 0 + 0

6 + 0 + 0

6 + 0 + 0

Fig. 1: A sub-graph of the version space for two input strings lpage@stanford.edu

and twoods@stanford.edu. Nodes correspond to source positions in the input strings
(i.e. how much of each string has already been matched). Source and goal nodes
are highlighted in green and red, respectively. Each edge is labeled with a regex
factor and a numeric cost, composed of the simplicity term (in green), and speci-
ficity terms for the two inputs (in blue and purple).

ceasing to generate more letters with probability 1−p. Again, it is not surprising
that the intended solution (3) wins out over the candidate (1) thanks to its much
higher likelihood.

2.2 Representing Solutions as a Version Space

Now that we have defined how to compute the posterior probability of a given
regex, how do we search the space of all regexes to find the one with the highest
posterior? The good news is that within the restricted class of format regexes
the space of solutions we need to consider is finite.3 The bad news, however, is
that this space is astronomically large, so we need to find a way to search it
without explicitly enumerating all solutions.

To this end, we follow prior work on synthesis using version space algebras
(VSA) [21,17,27,32], whose main idea is to represent the space of all solutions
compactly as a DAG, called a version space. Fig. 1 shows a small portion of
the version space for our running example. In our case, a node in the DAG
corresponds to a vector of source positions in the input strings, which indicates
how much of each input has been matched so far; in the rest of this section,
we will denote nodes by ⟨s1, s2⟩, where s1 and s2 are the prefixes of the input
strings that have been matched. An edge in the DAG corresponds to a regex

3 The full solution space is infinite if we allow optionals that are never taken in any
of the inputs, but such optionals are provably suboptimal (see Sec. 4).

6 No Author Given

component (a factor) that can take us from one node to another. For example,
an edge labeled [a-z]+ connects the source node ⟨ϵ, ϵ⟩ to the node ⟨lpage, twoods⟩.
A solution is any path from the source node to the goal node, where both inputs
have been matched in their entirety, ⟨lpage@stanford.edu, twoods@stanford.edu⟩.

The main benefit of the version space representation is its exponential com-
pactness: note how the DAG in Fig. 1 represents not only the three candidate
solutions we discussed in Sec. 2.1, but also all combinations of their factors, such
as e.g. [a-z]+@stanford\.[a-z]+ or [a-z]+@[a-z]+\.edu.

The compactness of the version space, however, would not do us much good
if we had to explicitly enumerate all complete paths in the DAG in order to find
the most likely solution. Fortunately, we can do better: our second key insight
is that we can map the posterior probability of a solution to a cost of a path
in the DAG, which enables using standard graph search algorithms to find the
cheapest path without enumerating all of them.
Mapping Probabilities to Costs. To this end, we associate each edge in the
DAG with a non-negative cost, which correspond to the negative log of its poste-
rior probability. For example, let e be the edge in Fig. 1 that connects the source
node to ⟨lpage, twoods⟩ and is labeled [a-z]+. The (unnormalized) posterior of
this edge can be computed as:

P ([a-z]+) · P (lpage | [a-z]+) · P (twoods | [a-z]+)

Taking the logs, we define the cost of e as a sum of a simplicity term—i.e. the
negative log of the prior—and two specificity terms for the two inputs—i.e. the
negative logs of the likelihoods:

cost(e) = − logP ([a-z]+)− logP (lpage | [a-z]+)− logP (twoods | [a-z]+)

Fig. 1 shows the costs of the edges in the DAG for our running example, split
into the three terms.

Importantly, both the prior and the likelihood defined in Sec. 2.1 are compo-
sitional wrt. the factor structure of the regex: that is, the probability of a regex
is the product of the probabilities of its factors.4 Hence, if we take the cost of a
path to be the sum of the costs of its edges, then minimizing the path cost cor-
responds to maximizing the posterior of its entire regex. In Fig. 1, the cheapest
path, which corresponds to [a-z]+@stanford\.edu, is highlighted in bold.

2.3 GVSE

Even though version spaces are compact relative to an explicit list of all solutions,
they can still grow quite large, especially as the number and length of the input
strings increases. Even for our running example, which only has two inputs, the
full version space contains 18×19 = 342 nodes and around 50 thousand edges. As
4 This is not exactly true for the likelihood of ambiguous regexes, which leads to under-

approximating their probability, as we discuss in Sec. 3.2; this is not a problem in
practice, however, since most format regexes are unambiguous.

Efficient Bayesian Synthesis with Version Spaces 7

a result, VSA-based search easily runs out of memory for even moderately-sized
inputs. Our third key insight is that instead of building the full version space and
then searching it, as in traditional VSA synthesis [17,27,32], we can construct
the version space on the fly, during search. As long as the search only explores
a fraction of the DAG, this approach can alleviate the memory bottleneck.

The baseline graph search algorithm is known as uniform-cost search or Di-
jkstra’s algorithm. At a high level, it explores a graph starting from the source
node, and maintains a frontier of nodes that have been visited but not yet ex-
panded; at each step, it expands the frontier node v with the lowest cost-so-far
g(v), i.e. the cost of the cheapest path from the source to v; once a full path
to the goal is found, it is guaranteed to be optimal. Unfortunately, uniform-cost
search is not very helpful when it comes to saving memory, since it is known to
explore a large portion of the DAG before reaching the goal. Instead, we turn to
two popular guided search algorithms—A* search and beam search—which are
known to significantly reduce the proportion of explored paths, and we adapt
them to searching a version space of regular expressions.

GVSE-A*. A* search [19] improves upon uniform-cost search by considering
not only v’s cost-so-far, g(v), but also its estimated cost-to-go, h(v)—i.e. the cost
of the cheapest path from v to the goal. A* requires a heuristic function that
estimates the cost-to-go, and as long as the heuristic is admissible—i.e. it never
overestimates the cost—the algorithm is guaranteed to find the optimal solution.
The main challenge, therefore, is to come up with a heuristic that is admissible,
computationally efficient, and sufficiently accurate to guide the search. A* search
has been used in program synthesis before [23], but only with purely syntactic
cost functions.

The design of our heuristic is based on a simple observation: the best regex
that matches n strings is necessarily more expensive than the best regex that
matches any m < n of those strings. Because the complexity of our problem is
exponential in the number of input strings, it makes sense to pick a small m
(say, m = 1 or 2), build complete version spaces for sub-problems of size m, and
use them to compute the heuristic for the full problem.

For example, going back to Fig. 1, let us estimate the cost-to-go for the
node v1 = ⟨lpage, ϵ⟩ using the two sub-problems with m = 1. The suffixes of
the two inputs that are still left to match are, respectively, @stanford.edu and
twoods@stanford.edu, and the best regex for either is the corresponding literal.
We conclude that the best solution for v1 is at least as expensive as the costlier
of these two, i.e. the regex twoods@stanford\.edu; in fact, the optimal solution for
this node is (twoods)?@stanford\.edu, and our estimate was pretty close.

Let us now compare the nodes v1 = ⟨lpage, ϵ⟩ and v2 = ⟨lpage, twoods⟩. If we
only consider the cost-so-far, then v1 looks more promising than v2 (because the
best path to v1 is very specific):

g(v1) = cost((lpage)? | ⟨lpage, ϵ⟩) = 35

g(v2) = cost([a-z]+ | ⟨lpage, twoods⟩) = 45.

8 No Author Given

As a result, uniform-cost search would expand v1 first, which would be a mistake:
in retrospect, we know that v2 lies on the optimal path. If we take into account
the heuristic, however, then v2 becomes more promising:

g(v1) + h(v1) = 35 + 87 = 122

g(v2) + h(v2) = 45 + 61 = 106.

As a result, A* search prefers v2 and finds the optimal solution faster.
GVSE-Beam. Although the A* heuristic helps curb the number of explored
paths, it is not always accurate, especially for the nodes that are far from the
goal. In our running example, consider the node v3 = ⟨ϵ, tw⟩, whose best regex
is (tw)?; its full cost estimate is g(v3) + h(v3) = 104, better than that of the
“optimal” node v2 (106), so v3 is expanded first by A*. At the same time, it
is intuitively clear that the only reason v3 appears so promising is that is has
made so little progress through the input strings, that the heuristic has trouble
accurately estimating its cost-to-go.

A popular alternative to A* is beam search [31], which trades off the opti-
mality guarantee for improved efficiency. Beam search gives up on keeping track
of all nodes in the frontier; instead, it divides nodes into “buckets”, only keeping
the best k nodes in each bucket and discarding the rest (where k is known as
beam size). Mostly commonly nodes are bucketed by the number of search steps
it took to reach them, but not necessarily; intuitively, buckets should group to-
gether nodes that have made “the same amount of progress” towards the goal,
so that their costs can be compared meaningfully.

In our setting, we propose to bucket the nodes by the total number of char-
acters they have parsed from all input strings. For example, node v3 is in the
bucket 2 (because it has only parsed tw) and node v2 is in the bucket 11 (because
it has parsed lpage and twoods). When deciding whether to keep either of these
nodes in the frontier or to discard it, v3 will be compared with other bucket-2
nodes (whose costs are all low), and v2 will be compared with other bucket-11
nodes (whose costs are all higher). As a result, v2 will make it to the top k,
while v3 might be discarded (given low enough k). Our evaluation shows that
this bucket structure enables our beam search to obtain high precision even with
very small beam sizes.

3 Language and Cost Function

3.1 Format regexes

As only some regex features are amenable to learning from positive examples, we
consider a restricted DSL of regular expressions, which we call format regexes,
representing a regex as a sequence of factors, individual simple components which
include literal strings, character classes, etc. This is a common restriction for al-
gorithms synthesizing regular expressions and string transformations from posi-
tive examples [17,32,12], and in fact our grammar extends that of existing work
by including optionals. The grammar for the DSL is shown in Fig. 2. The specific
choice of character classes is inessential to our algorithm.

Efficient Bayesian Synthesis with Version Spaces 9

regex ::= ϵ | factor regex
factor ::= atom | (atom)?

atom ::= class | class + | literal(string)
class ::= [0-9] | [a-z] | [A-Z] | [a-zA-Z] | [a-zA-Z0-9]

Fig. 2: The grammar of format regexes

3.2 Bayesian cost function

To determine the best regular expression from the grammar, we use a Bayesian
cost function, computing

P (r | S) ∝ P (r) · P (S | r)

according to Bayes’ rule. Our goal is to find the regex r which maximizes P (r | S);
as the constant of proportionality depends only on the input strings S and not
on the regex r, this can be done by maximizing the right-hand side.

We reframe this in terms of a cost function: taking negative logs, we define

cost(r | S) := − log [P (r) · P (S | r)] .

Taking simplicity(r) := − logP (r) and specificity(r | s) := − logP (s | r), and
assuming input strings are i.i.d., this becomes

cost(r | S) = simplicity(r) +
∑
s∈S

specificity(r | s).

In the next sections, we formalize how the simplicity and specificity terms are
computed.

Simplicity. To compute the probability of a regular expression, we need a
probabilistic model for the generation of regexes. For this, we use a probabilistic
context-free grammar (PCFG), a framework in which each production rule of a
grammar has an associated probability. To find the probability of a program, one
takes a top-down derivation of the program from the grammar, and multiplies
together the probabilities associated with each production rule used.

The production probabilities can encode prior knowledge about the domain:
for instance, [0-9] is simpler than [a-zA-Z0-9] which is simpler than a constant
string which is simpler than an optional.

By using a PCFG, the simplicity term can be computed compositionally from
the factors used. Let pend be the probability of the transition regex → ϵ, and let
r be a regular expression composed of the factors r1 . . . rn. Then the probability
assigned to r by the PCFG is

P (r) = pend ·
n∏

i=1

(1− pend)P (ri),

Overloading simplicity(f) to denote − log pend − logP (f) for a factor f , we have:

simplicity(r) =
n∑

i=1

simplicity(ri) + a constant.

10 No Author Given

Specificity. The specificity cost of a regular expression is computed in terms of
the probability that the given inputs would be chosen from this regex. For this,
we need a probabilistic model of generating strings from regexes. To this end,
we employ the stochastic regular expressions (SREs) [25,30]:

S ::= literal(string) | S1S2 | S1 |p S2 | S∗p

Here, p may be any real number in the interval (0, 1). While a regular expression
merely describes a set of strings, a stochastic regular expression additionally
describes a probability distribution on those strings, by attaching probability
information to disjunctive constructs and giving it a semantics as a probabilistic
generator of text.

This semantics is best described using a probabilistic sample operation:

sample(literal(s)) = s

sample(s1s2) = sample(s1) sample(s2)

sample(s1 |p s2) =

{
sample(s1) with probability p

sample(s2) with probability 1− p

sample(s∗p) =

{
sample(s) sample(s∗p) with probability p

ϵ with probability 1− p

To apply stochastic regular expressions to our synthesis task, we translate format
regexes into SREs. This requires selecting values for the probability annotations
p, which we do in an unbiased way—for instance, the factor literal(a)? is trans-
lated to the SRE literal(a) |0.5 ϵ.

Given the semantics of SREs, it is not hard to compute the probability of
generating a given input. For instance, the regex [0-9][0-9] generates the string
42 with probability

P (42 | [0-9][0-9]) = P (4 | [0-9]) · P (2 | [0-9]).

Importantly, just like the PCFG in the previous section, the full probability of a
regex is a product of the probabilities of its factors, which is an essential property
to be able to compute the specificity term compositionally.
Ambiguous parses. Unfortunately, this is not always the case. Consider the
regex [0-9]?[0-9]?, encoding “up to two digits”. The string 8 may be generated
as 8 followed by ϵ, or as ϵ followed by 8, so its probability is the sum of these
two cases (which does not decompose after taking the log):

P (8 | [0-9]?[0-9]?) = P (8 | [0-9]?) · P (ϵ | [0-9]?)
+ P (ϵ | [0-9]?) · P (8 | [0-9]?)

This is an issue when a regex can parse the input strings in more than one way.
We bypass this issue by reframing the problem to ask for the most likely com-

bination of a regex together with a parse—i.e. an assignment of input segments

Efficient Bayesian Synthesis with Version Spaces 11

to factors—rather than merely the most likely regex. This is, of course, equiva-
lent in the common case when the optimal regex is unambiguous, which is the
case for all but four of the regexes used in our evaluation. In the sequel we will
freely use “optimal regex” to refer to the most likely regex-parse combination.

Computing the specificity term. Having chosen a parse, we may now com-
pute the likelihood P (s | r). Let r be a regular expression composed of the factors
r1 . . . rn, and let s = s1 . . . sn be a string such that si is parsed by ri. Then

P (s | r) =
n∏

i=1

P (si | ri)

and, taking negative logs, we have

specificity(r | s) =
n∑

i=1

specificity(ri | si).

4 Version space algebras

We encode the set of candidate solutions using a version space algebra (VSA).
VSAs [21,17] are a synthesis technique which represents the search space using
a data structure called a version space. VSA techniques are based on three core
operations:

1. Construction: given a single input s, build a version space VS(s) which en-
codes the set of all candidate programs which work for that one input.

2. Intersection: given two version spaces V1 and V2, compute a combined version
space V1 ⊓ V2 which encodes the intersection of programs in V1 and V2.

3. Search: given a version space, find the best program from it (according to
some cost function).

VSA-based program synthesis works by creating a version space for each in-
put example, intersecting them, and then extracting the best program from the
resulting version space.

4.1 A version space algebra for format regexes

In Regex+, a version space is a directed acyclic graph (V,E), where each node
v ∈ V is labelled by a source position in the input strings, and each edge e ∈ E
is labelled by a factor. Possible regexes are encoded as paths though the DAG.
We next discuss the three VSA operations in detail. For this discussion, we use
a small running example consisting of the two input strings 15 and 18.

12 No Author Given

• • •

{15,[0-9]+}

{1,[0-9],[0-9]+} {5,[0-9],[0-9]+}

• • •

{18,[0-9]+}

{1,[0-9],[0-9]+} {8,[0-9],[0-9]+}

(a)

• • •

• • •

• • •

[0-9][0-9]

[0-9]

[0-9]+

[0-9]+

[0-9]+

[0-9]+

[0-9]+

1? 5?

1?

1? 5?

1? 1?

8?

1?

8?

5?

8?

1

(b)

Fig. 3: (a) The version spaces VS(15) and VS(18). (b) The intersection of the
version spaces from (a). For clarity, longer optionals are omitted and only one
factor is shown between any two nodes.

Initial Version Space Construction. To construct a version space from an
input string, we create vertices for each position in the string, and we connect
each pair of vertices by edges labelled by the factors which match the corre-
sponding parts of the string. For our running example, the initial version spaces
are shown in Fig. 3a. More formally, given an input string s = c0c1 . . . cn−1, we
construct the version space VS(s) = (V,E) where:

V := {vi | 0 ≤ i ≤ n}
E := {(vi → vj ; r) | 0 ≤ i < j ≤ n, r matches ci . . . cj−1}

and (vi → vj ; r) denotes an edge from vi to vj labelled by the factor r.
Version Space Intersection. Next, the version spaces representing each input
are intersected. The intersection version space for our running example is shown
in Fig. 3b. From two version spaces (V1, E1) and (V2, E2), we construct their
intersection (V∩, E∩) as follows. Since we want a path through (V∩, E∩) to be
both a path through (V1, E1) and (V2, E2), the vertices in V∩ are pairs of vertices
from V1 and V2. Then the edges from (v1, w1) to (v2, w2) will be labelled by
factors which appear both as edges v1 → v2 and as edges w1 → w2. For example,
both version spaces in Fig. 3a have an edge from the start to the end labelled
by the factor [0-9]+, so this factor is included in their intersection Fig. 3b across
the diagonal.

However, the intersection mechanism as described so far does not account for
optional factors. So far, each edge in the the intersection version space always
consumes a non-empty substring of both inputs. To support optionals, we must
allow edges that consume characters only from one of the inputs. We account
for these factors by taking each edge (v1 → v2; r) in one of the input version
spaces, and adding (r)? as an edge between vertices of the form (v1, w) and
(v2, w), for each vertex w of the other input version space. These optional edges
can be seen in Fig. 3b. All the horizontal optional edges, such as those labelled
by 5?, consume a part of the first input (15) but not the second (18), while all of
the vertical optional edges consume a part of the second input but not the first.

Efficient Bayesian Synthesis with Version Spaces 13

Formally, we define

V∩ := V1 × V2

E∩ := {((v1, w1) → (v2, w2); r) | (v1 → v2; r) ∈ E1, (w1 → w2; r) ∈ E2}
∪ {((v1, w) → (v2, w); (r)?) | (v1 → v2; r) ∈ E1, w ∈ V2}
∪ {((v, w1) → (v, w2); (r)?) | v ∈ V1, (w1 → w2; r) ∈ E2}

Extracting the best solution. Having constructed a DAG, it remains to find
the optimal candidate regex. Recall from Sec. 3.2 that a regex r composed of
the factors r1 . . . rn where each factor ri parses portion si of input string s is
optimal when the cost function

cost(r | S) = simplicity(r) +
∑
s∈S

specificity(r | s)

=

n∑
i=1

[
simplicity(ri) +

∑
s∈S

specificity(ri | si)

]
+ a constant

is minimized. As an edge in the version space encodes both a factor and a por-
tion of the inputs which it parses, optimizing this cost function thus becomes
a shortest path problem, where the edge e corresponding to the factor ri and
parsing the set Si of substrings of the input strings is assigned the weight

cost(e) := simplicity(ri) +
∑
s∈Si

specificity(ri | s).

So in principle, the best solution may be extracted by computing the shortest
path in the DAG, using e.g. a dynamic program.

However, even constructing the DAG in the first place is often infeasible,
as it grows quite large and requires too much memory. In Sec. 5, we present
more efficient guided version space exploration (GVSE) algorithms to address
this challenge.

4.2 Completeness

A key advantage of VSA techniques is that they are complete: out of all the
infinitely-many format regexes, we guarantee that we can find the optimal one
by merely searching for the optimal path in the finite-size version space. This is
a consequence of the following theorem:

Theorem 1. The optimal format regex is encoded by a path in the version space.

Recall that, as per Sec. 3.2, the optimal format regex refers to the most likely
combination of a format regex and a parse.

Proof. We show the contrapositive, that every regex and parse omitted from the
version space is suboptimal. A regex-parse combination will only be omitted if
one of its factors is omitted as an edge in the version space.

14 No Author Given

By construction, every factor which parses a nonempty segment of some
input is included as an edge in the VSA, so this factor must not parse any input
from any of the examples. So a strictly better regex-parse combination may be
obtained by simply removing this factor.

Corollary 1 (Completeness). The shortest path in a version space is the
overall optimal format regex for those input strings.

5 Guided Version Space Exploration

To overcome the scalability challenge of the VSA, we propose a new search
algorithm which we call guided version space exploration (GVSE). As the version
space graph is often too large to even be constructed in memory, our GVSE never
fully constructs this graph, saving memory.

Typically, given input strings S = {s1, s2, . . . , sn}, one would construct the
version spaces VS(s1),VS(s2), . . . ,VS(sn), respectively, then intersect them one-
at-a-time with a binary intersection operation:

VS(S) = ((VS(s1) ⊓ VS(s2)) ⊓ . . .) ⊓ VS(sn).

To avoid constructing any of the intermediate graphs in memory, we describe an
n-way intersection operation on version spaces.

– Vertices of VS(S) are n-tuples ⟨i1, . . . , in⟩ where each ik is an index into the
string sk.

– An edge between two different states ⟨i1, . . . , in⟩ and ⟨j1, . . . , jn⟩ is labeled
with a factor r iff for every 1 ≤ k ≤ n, either (1) r accepts sk[ik . . . jk), or
(2) r is optional and ik = jk.

This graph may be computed on-the-fly rather than being fully realized in mem-
ory, enabling the use of efficient search algorithms that don’t explore every node.

5.1 GVSE-A*

We first present GVSE-A*, a complete search algorithm which guarantees opti-
mality of its output using an admissible heuristic.

We perform A* search starting from ⟨0, . . . , 0⟩ and with a goal node of
⟨|s1|, . . . , |sn|⟩. A* [19] is a best-first search algorithm, which explores outwards
from the start node, prioritizing nodes which may be a part of the best overall
path from the start to the end. The cost of this path for a node v is given by
g(v) + h∗(v), where g(v) is the cost of the best path from the start to v, which
is known, and h∗(v) is the cost of the best path from v to the goal—which is
unknown. A* therefore instead ranks nodes by g(v)+ h(v) for an approximation
h(v) of h∗(v), known as the heuristic function. If h(v) ≤ h∗(v) for all nodes v,
h(v) is called admissible and A* is guaranteed to find the optimal path.

Our A* heuristic comes from the insight that for a small number of inputs,
it is easy to fully compute all best paths in a version space. Moreover, if we

Efficient Bayesian Synthesis with Version Spaces 15

simplify the problem by considering only a small subset of the inputs, the cost
of the best solution to this restricted problem will be smaller than the cost of
the best solution to the full problem.

Formally, for a small subset S′ ⊂ S of the input strings, we define a heuristic
function hS′ as follows: Let m = |S′| and without loss of generality suppose S′

is {s1, . . . , sm}. Then the value of the heuristic hS′(⟨i1, . . . , in⟩) is the length of
the best path from ⟨i1, . . . , im⟩ to ⟨|s1|, . . . , |sm|⟩ in VS(S′). Choosing |S′| to be
sufficiently small, this version space is easily stored in memory and all best paths
precomputed using e.g. the method described in Sec. 4.

In the implementation, we strengthen the heuristic by computing hS′ for a
number of choices of S′, and taking the maximum:

h(v) := max{hS′
1
(v), hS′

2
(v), . . . }

The larger the sets S′, and larger the number of subsets used, the more precise
the heuristic function will be, but more expensive to compute. We found that
|S′| = 2 strikes a good balance between not using too much memory while still
successfully pruning the space and speeding up the search, and so we use a
collection of pairs.

Theorem 2 (Admissibility). The heuristic function hS′(v) is admissible for
any S′ ⊂ S.

Proof. For a string s, let s[i . . .] denote the suffix of s starting at index i.
Let ⟨i1 . . . in⟩ = v, and let v′ = ⟨i1 . . . im⟩ be the corresponding node in

VS(S′). A path from v to ⟨|s1|, . . . , |sn|⟩ represents a format regex which matches
the suffixes s1[i1 . . .], . . . , and sn[in . . .] of the inputs in S, and correspondingly
a path from v′ to ⟨|s1|, . . . , |sm|⟩ in VS(S′) represents a format regex which
matches the suffixes s1[i1 . . .], . . . , sm[im . . .].

Let r be the format regex corresponding to the optimal path from v to
⟨|s1|, . . . , |sn|⟩, so that

cost(r | s1[i1 . . .], . . . , sn[in . . .]) = h∗(v).

On the other hand, h(v) is the cost of the optimal regex for the subset of
suffixes s1[i1 . . .], . . . , sm[im . . .]. Thus,

h(v) ≤ cost(r | s1[i1 . . .], . . . , sm[im . . .])

≤ cost(r | s1[i1 . . .], . . . , sn[in . . .]) = h∗(v).

Corollary 2. The heuristic function h(v) = max{hS′
1
(v), hS′

2
(v), . . . } is admis-

sible, for any collection of subsets S′
i ⊂ S.

Corollary 3 (Completeness). GVSE-A* finds the optimal regular expression.

16 No Author Given

5.2 GVSE-Beam

Our second GVSE search algorithm is based on beam search and, while no
longer complete, significantly improves efficiency and performs extremely well in
practice.

Beam search [31] is a greedy search algorithm commonly used in machine
learning for decoding the output of neural networks. In that context, beam search
is applied to a search tree; it works by greedily picking a beam, i.e. a collection
of k candidate nodes from each depth of the tree, and discarding any nodes
whose costs-so-far are not among the top k at that depth. This is the source
of incompleteness in beam search: the optimal path may start with a high-cost
prefix, and thus mistakenly be discarded early on. Nevertheless, beam search is
highly effective in practice. The intuition is that two partial paths at the same
depth in the tree tend to have solved similar amounts of the problem, so their
scores can be meaningfully compared.

Adapting beam search to version space exploration is not entirely straight-
forward: a version space is a highly-connected DAG rather than a tree, so the
notion of “depth” is not very useful to decide which nodes are meaningfully com-
parable (for example, you can argue that all nodes in the DAG in Fig. 3b are at
the same “depth” of one). Hence, we need to design a different way to “bucket”
the nodes together.

To this end, we group nodes by total number of characters parsed, defining

bucket(⟨i1, . . . , iN ⟩) =
N∑

n=1

in.

Intuitively, we expect that for two nodes v1 and v2 with bucket(v1) = bucket(v2),
as a path from v1 to the end has the same number of characters as a path from
v2 to the end, h∗(v1) is likely to be similar to h∗(v2), and so their costs so far
may be meaningfully compared.

One useful property of beam search is that the beam size k is a tunable
parameter than governs how approximate the search is. With a beam size of
k = 1, it becomes a completely greedy search, and as the beam size grows larger,
beam search will explore all paths, regaining completeness in the limit. However,
this of course has the inverse effect on performance, with larger beam sizes being
proportionally more expensive to compute. Therefore, the beam size is a useful
parameter for trading off efficiency and optimality.

6 Evaluation

We have implemented our Bayesian cost function and the GVSE search pro-
cedure in a prototype synthesizer called Regex+, which takes as input a set
of strings and outputs the most likely regex that matches those strings. Our
empirical evaluation aims to answer the following research questions:

RQ1: How accurate is the Bayesian cost function at recovering regexes from infor-
mative positive examples provided by humans?

Efficient Bayesian Synthesis with Version Spaces 17

RQ2: Do the proposed search procedures, both GVSE-A* and GVSE-Beam, offer
benefits over the baseline VSA search?

6.1 Experiment Setup

Existing benchmarks for evaluating regex synthesizers have not focused on the
setting where only positive examples are provided. Further, the positive examples
that they do include were not designed in order to convey a regex in the absence
of other supervision (e.g. negative examples, or a textual prompt) [10]. Thus,
we collected and annotated a novel benchmark dataset designed for our setting.
Specifically, we took regexes from prior benchmarks and then augmented them
with human-designed informative positive examples, as described below.
Regex Selection. To obtain regexes for our experiments, we selected all regexes
from Regel’s StackOverflow dataset [10] that conform to Regex+’s regex
grammar; this left us with 21 regexes. We decided to focus on this dataset be-
cause it is realistic (the regexes are extracted from StackOverflow posts);
this is in contrast to benchmarks from [24,22], which are synthetic and/or use a
restricted alphabet, and are not representative of the format of learning task we
are interested in.
Human Data Collection. The StackOverflow benchmarks are intended
for multi-modal synthesis, using a combination of natural-language descriptions,
positive, and negative examples, and thus often provide a minimal number of
positive examples, in some cases only one. We first conducted a small pilot study
that confirmed that neither humans nor Regex+ were able to learn regexes from
those minimal example sets (both had accuracy of less than 10%). Instead, our
experiments require informative examples sets, the kind that a human would
give if they were asked to communicate a regex with just positive examples.
To this end, we conducted two human experiments: (1) a speaker experiment,
where the humans were asked to generate positive examples for given regexes,
and (2) a listener experiment, where the humans were asked to infer regexes
from positive examples. We used the data from the first experiment to construct
our benchmark suite, and the data from the second experiment as the human
baseline for regex learning.

Both experiments were conducted as an online surveys using JSPhych. We
recruited 11 and 15 participants for each experiment, respectively, with knowl-
edge of regular expressions; the participants in the two studies did not overlap.
They were CS students and faculty from our department and departments of
our collaborators, and were not compensated.
Speaker Experiment. In the speaker experiment, each participant was given
the regex in the Regex+ DSL and its natural-language description, and asked to
provide as many or as few examples as they thought would be necessary to convey
the regex to another person. Participants were aware of the DSL restrictions.
Further, they were given four training examples, each requiring them to infer a
regex from curated examples, to illustrate what informative and uninformative
examples might look like.

18 No Author Given

As a result of this experiment, we obtained 231 benchmarks (i.e. 11 example
sets for each of the 21 regexs) where each benchmark consists of a regex and a
set of positive examples. The number of examples per benchmark varies from 1
to 7 (median 3); the length of the examples varies from 1 to 67 (median 6).
Listener Experiment. Each listener was asked to infer the regex for a set of
examples corresponding to each of the 21 regexes in our evaluation dataset. In
order to minimize the effect of speaker quality (i.e. some sets of examples for
a given regex are more informative than others, depending on the speaker), we
randomized which of the 11 example sets would be seen by each listener. We also
randomized the order of the regexes to prevent learning effects. In two cases, the
participants did not finish guessing all of the regexes, so we recruited two addi-
tional participants to complete the task. This resulted in 15 total participants.
Participants entered their guesses in a text box; they were made aware of the
Regex+ DSL, but were not required to adhere to it; instead, they could enter
any regex using Javascript syntax. Listeners were given feedback if the regex
they entered was not a valid regex, but were not told if it did not match some of
the examples; our rationale was to prevent typos, but otherwise not to interfere
with the human learning process.
Computational Experiments. All experiments were run on a server on a sin-
gle core, with a 12GB RAM limit and a 60 minute timeout.

6.2 RQ1: Accuracy of the Cost Function

We first compare the exact match accuracy—i.e. the fraction of benchmarks for
which the ground truth regex is inferred—for Regex+ with its Bayesian cost
function against two ablations that only use the simplicity and specificity terms,
respectively. Note that the simplicity-based cost corresponds to a more tradi-
tional syntactic cost function [23,6]. Unfortunately, we cannot compare Regex+
to any existing synthesizers because they do not support learning from only pos-
itive examples. We do, however, compare with the accuracy of human listeners,
which we take as a baseline for how many benchmarks we can reasonably expect
to solve, given that the input examples are imperfect. The accuracy results are
shown in Fig. 4, and sample solutions are shown in Tab. 1.
Comparison with Ablations. Overall, Regex+ significantly outperforms both
ablations in terms of exact match accuracy: in total over all regexes, Regex+
solves 55% of benchmarks exactly correct (see the leftmost column of Fig. 4),
the simplicity-only cost solves 20%, and the specificity-only cost does not solve
a single benchmark, and is therefore omitted from the figure. Line 1 in Tab. 1
shows an example where Regex+ picks up on the pattern present in all three
inputs (that they all start with C0 followed by exactly four digits), while the
simplicity cost over-generalizes to an arbitrary sequence of digits.

When splitting the results by regex, we can see that simplicity does outper-
form Regex+ on 5/21 regexes. Closer inspection shows that this happens when
the ground truth regex is very general, while the input examples feature spuri-
ous patterns. An example is the benchmark in line 2 of Tab. 1: the ground truth

Efficient Bayesian Synthesis with Version Spaces 19

Fig. 4: Comparison of exact match accuracy against ground truth regex across
human listeners, Regex+, and an ablated cost function that only includes sim-
plicity. Results for the ablation that only includes specificity are not depicted
because this system was unable to correctly infer any regexes. Accuracies are
shown for each individual regex in our benchmark dataset.

Table 1: A sample of benchmarks and corresponding results inferred by humans,
the Bayesian cost function, and the simplicity-only ablation.
Ground Truth Examples Humans Bayes Simplicity

1 C0[0-9]{4}

C09999

C01234

C05656

C0[0-9]{4} C0[0-9]{4} C[0-9]+

2 [a-zA-Z0-9]+

aA3aA3a

a

aaa

a(A3)?(a)?(A3)?(a)? a([a-zA-Z0-9]+)? [a-zA-Z0-9]+

3 [0-9]{3}-[0-9]{3}-[0-9]{4} 619-953-8114 [0-9]{3}-[0-9]{3}-[0-9]{4} [0-9]+-[0-9]+-[0-9]+ [0-9]+-[0-9]+-[0-9]+

4 Page [0-9]+ of [0-9]+
Page 3 of 570

Page 1 of 60
Page [0-9]+ of [0-9]+ Page [0-9] of [0-9]+ [a-zA-Z]+ [0-9] [a-z]+ [0-9]+

5 [a-z]{1,3}-[a-z]{1,2}-[0-9]{1,4}

jwa-bu-9247

k-p-2

la-n-738

[a-z]+-[a-z]+-[0-9]+ [a-z]+-[a-z]{1,2}-[0-9]+ [a-z]+-[a-z]+-[0-9]+

regex allows any sequence of alphanumeric characters, while all three human-
provided examples start with a lower-case a, which confuses Regex+, but has
no influence on the simplicity cost.

Comparison with Humans. Somewhat surprisingly, on average Regex+ per-
forms slightly better than human listeners (55% vs. 48% accuracy). As seen in
Fig. 4, humans outperform Regex+ on only two regexes; sample benchmarks
for those regexes are shown in lines 3 and 4 of Tab. 1. In both of those cases,
humans have an edge because they can infer the meaning of the regex, beyond
just the syntactic pattern. The regex in line 3 is a common format for phone
numbers; this familiarity allows humans to infer it from just a single example.
The benchmark is line 4 is even more interesting: although both input strings
only show a single digit for the page number, humans use their knowledge of the
world to infer that page numbers can contain multiple digits.

20 No Author Given

Table 2: Comparison of search algorithms in terms of: exact match accuracy,
% of benchmarks finished within the timeout, avg RAM in megabytes per
benchmark, average time in second per benchmark. Both RAM and time are
evaluated only on benchmarks all algorithms could finish: 226 benchmarks total.

Algorithm match finished RAM Time
VSA 54.54 % (126) 97.84 % (226) 172.57 MB 4.76 seconds
A* 54.97 % (127) 99.13 % (229) 22.23 MB 5.8 seconds

Beam (size 5) 55.8 % (129) 99.57 % (230) 19.54 MB 0.17 seconds

The four regexes that Regex+ was not able to guess from any of the exam-
ples, could not be solved by humans either (see the last four columns in Fig. 4).
We hypothesize that these four regexes are too complex to be learned from just
a few positive examples. An example is shown in line 5 of Tab. 1: the underlying
regex is quite complex, requiring the lengths of the three parts of a string to
fall within specific ranges; to illustrate such a requirement properly, the speaker
would need to generate many more examples, which our human speakers were
understandably reluctant to do. If we omit these four regexes from our accuracy
calculation, Regex+ achieves 68% and humans achieve 59%.

We also conducted a more in-depth analysis of the agreement between Regex+,
ablations, and human listeners on those benchmarks, which at least one of them
solved incorrectly. These results can be found in Appendix A.

6.3 RQ2: Efficiency of GVSE

To evaluate the efficiency benefits of GVSE, we implement a baseline VSA algo-
rithm that uses the same objective function but always constructs the full version
space and then performs search using Dijkstra’s algorithm. We then compare our
complete algorithm, GVSE-A*, to this baseline in terms of memory consump-
tion and time spent per benchmark. Finally, we also compare GVSE-A* to its
approximate version, GVSE-Beam. The results are shown in Tab. 2 and Fig. 5.
GVSE-A*. As seen in Tab. 2, the VSA baseline was able to finish 226 bench-
marks out of 231—3 fewer than GVSE-A*—and ran out of memory on the rest.
Further, VSA’s average RAM consumption per benchmark is 7x more than that
of GVSE-A*. While, on average, GVSE-A* was a little slower than the VSA
baseline, when looking at the second plot on Fig. 5 we can see that the av-
erage is heavily skewed by the outliers and for the majority of the benchmarks
GVSE-A* is faster. Additionally, VSA consumes more RAM for almost all of the
benchmarks. This indicates that the GVSE-A* heuristic we are using is helpful
in guiding the search to be more efficient, and not constructing the entire VSA
substantially reduces memory consumption.
GVSE-Beam. GVSE-Beam is not only the most efficient, but also, surprisingly,
the most accurate of the three search algorithms we consider (Tab. 2). Its average
time spent per benchmark is almost 30x less than GVSE-A*, while at the same
time using less RAM for all the benchmarks as seen in Fig. 5. Further, it is

Efficient Bayesian Synthesis with Version Spaces 21

Fig. 5: Scatter plots of time and memory used by VSA baseline and GVSE-Beam
v.s GVSE-A*. Each point represents a benchmarks. Only benchmarks that all
algorithms could finish are considered (226 total)

able to finish more benchmarks within the set resources constraints and despite
being approximate, gets two more benchmarks correct than GVSE-A* (which
we discuss in more detail below).

GVSE-Beam: Parameters. Finally we evaluated how beam size affects the
efficiency and accuracy of GVSE-Beam. Fig. 6 (bottom) shows the resources
consumption, which as expected, increases linearly with beam size. While at
beam size 50 GVSE-Beam remains the best with respect to average time, it
loses to GVSE-A* in terms of RAM. Fig. 6 (top) plots exact match accuracy
(i.e. percentage of benchmarks that match the ground truth) and optimality
(i.e. percentage of benchmarks whose score matches the optimal under the cost
function). As expected, optimality strictly increases with beam size. Specifically,
beam of size 50 yields an optimally scoring result on 99.12% of the benchmarks,
with only two benchmarks producing suboptimal results.

22 No Author Given

Fig. 6: Line plots of exact match accuracy, optimality, RAM, and time, as a
function of beam size (for sizes 1, 2, 5, 10, 20, 50). The efficiency plots are only
evaluated on the benchmarks that all beam sizes were able to finish within the
resources constraints (226 benchmarks total).

At the same time, accuracy peaks at beam sizes 2–5, and then decreases and
converges to that of GVSE-A*. Our hypothesis is that the greedy bias of beam
search with small beam sizes matches the bias used by human speakers, and
therefore can get higher accuracy than the optimal search. In fact, we are not
the first ones to observe this effect: this has been previously described in machine
translation literature [37].

7 Related Work

7.1 Semantic Cost in Program Synthesis

Our work is related to other efforts to handle under-specification in program
synthesis by incorporating semantic cost functions. One class of techniques [4,11]
learns a model (e.g. a neural network) that maps a specification to a syntactic

Efficient Bayesian Synthesis with Version Spaces 23

cost function (e.g. a probabilistic grammar), which allows them to use traditional
search algorithms, while still incorporating information from the specification.
This approach is very general, but requires hard-to-obtain training data.

Other approaches [2] add a semantic bias via data augmentation (i.e. adding
more examples); depending on the domain, it might not be clear how to generate
additional examples, and in addition, the extra examples slow down the search.

The closest approach to ours is Bayesian program synthesis [20,5,29], which
uses Bayesian reasoning as the basis of semantic cost. (Closely related to it is
the work on synthesizing symmetric lenses [25], which defines its cost function
in terms of entropy instead of posterior probability.) We contribute to this line
work by proposing a new search algorithm based on version spaces, which can
efficiently optimize against a Bayesian cost function, as long as its structure is
compositional in the version space.

7.2 Regular Expressions in Program Synthesis

Regular expressions have been a popular target for program synthesis, thanks
their utility and relative simplicity. A common thread in this line of work [22,10,38,34]
is using enumerative search to generate regexes from positive and negative ex-
amples. AlphaRegex [22] proposed top-down search with pruning based on
over- and under-approximation, to synthesize regular expressions over a small
alphabet ({0, 1}). Regae [38] and Regel [10] use similar top-down search, but
target real-world regexes (over the full ASCII alphabet); to guide the search,
the former relies on extensive user interaction, while the latter uses information
extracted from natural language descriptions via semantic parsing. Paresy [34]
contributes a bottom-up search algorithm for regex synthesis, which can be ac-
celerated by GPUs, achieving significant speedups over top-down search. Im-
portantly, none of these algorithms support optimization wrt. a Bayesian cost
function. Although prior work has shown [23,6] how to use enumerative search
to optimize against purely syntactic cost—like our simplicity—it is not clear
how to extend it to handle semantic, data-dependent cost—like our specificity.
On the other hand, the regex synthesizers listed above support a much richer
class of regexes than our tool, and for those more complex regexes, additional
input modalities (such as negative examples, natural language descriptions, or
use interaction) are indispensible.

7.3 Regular Expressions in Machine Learning

Outside of the program synthesis community, regular languages have been a
long-standing target in the machine learning, starting from the seminal work
of [3]. Some of these technique do tackle learning from only positive data. A
more theoretical line of work [16,13,12] is concerned with characterizing classes
of regular expressions that are learnable in the limit (i.e. given enough data).
Others propose algorithms for text classification [28,36], text extraction [8], or
XML schema inference [7,14]. These techniques, however, are designed to work
on a large amount of data, and many of them are approximate, whereas we are

24 No Author Given

interested in learning from a small number of examples, and producing sound
solutions (that are guaranteed to match the examples).

Recent advances in neural networks made it possible to generate regexes
from a range of textual descriptions [24,15,26]. Although tools like Github Copi-
lot [15] and ChatGPT [26] are capable of inferring high-quality regexes from a
few positive examples, these tools are unpredictable and often generate unsound
solutions.

7.4 Synthesis with Version Space Algebras

While not explicitly targeting regular expressions, tools such as FlashFill [17]
and BlinkFill [32] also identify regular patterns as part of synthesizing string
transformations, although the class of patterns they support is more restricted.
The structure of our version spaces is directly inspired by the InputDataGraph
data structure in BlinkFill, but we use it for a different purpose and extend
it in several ways, most notably by adding optionals. The main challenge in
VSA-based synthesis is that version spaces grow very large as the number and
length of examples increases. Recent work by [9] proposes to address this via
guarded DSLs, a special local ranking function that enables optimization without
constructing the full version space; this function, however, has very restricted
applicability, and would not work for our problem, where all atomic parts of a
regex contribute to its score, and no single part dominates. Instead we propose
GVSE, a more general approach to reducing memory demands of VSA-based
synthesis, by combining it with efficient graph search algorithms, such as A*
and beam search.

8 Conclusions and Future Work

We have presented an efficient algorithm for Bayesian synthesis of regular ex-
pressions from positive examples. Our algorithm is based on three key insights:

1. Version spaces are a good fit for Bayesian synthesis because an edge in a
version space encodes not only a part of a program, but also a part of the
specification that it solves, making it possible to decompose a Bayesian cost
function into a sum of edge costs.

2. We can obtain an admissible A* heuristic for a version space for n examples
by simply using the cost of the best program for some m < n examples.

3. Beam search over a version space can produce accurate results as long as we
bucket together nodes that have made comparable progress towards solving
the specification.

We believe that all three of these insights are generalizable beyond regular ex-
pressions. In future work, we plan to explore the application of these ideas to
other domains where version spaces [17,32] or the related data structure of finite
tree automata [35] are used for synthesis.

Efficient Bayesian Synthesis with Version Spaces 25

References

1. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. pp. 1–8. IEEE (2013), https://ieeexplore.ieee.org/document/
6679385/

2. An, S., Singh, R., Misailovic, S., Samanta, R.: Augmented example-based synthesis
using relational perturbation properties. Proc. ACM Program. Lang. 4(POPL)
(dec 2019). https://doi.org/10.1145/3371124, https://doi.org/10.1145/3371124

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (nov 1987). https://doi.org/10.1016/0890-5401(87)90052-6, https:
//doi.org/10.1016/0890-5401(87)90052-6

4. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
Learning to write programs. arXiv preprint arXiv:1611.01989 (2016)

5. Barke, S., Kunkel, R., Polikarpova, N., Meinhardt, E., Bakovic, E., Bergen, L.:
Constraint-based learning of phonological processes. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
pp. 6176–6186. Association for Computational Linguistics, Hong Kong, China (Nov
2019). https://doi.org/10.18653/v1/D19-1639, https://aclanthology.org/D19-1639

6. Barke, S., Peleg, H., Polikarpova, N.: Just-in-time learning for bottom-up enu-
merative synthesis. Proc. ACM Program. Lang. 4(OOPSLA) (nov 2020). https:
//doi.org/10.1145/3428295, https://doi.org/10.1145/3428295

7. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise dtds from xml
data. In: Proceedings of the 32nd International Conference on Very Large Data
Bases. pp. 115–126. VLDB ’06, VLDB Endowment (2006)

8. Brauer, F., Rieger, R., Mocan, A., Barczynski, W.M.: Enabling information ex-
traction by inference of regular expressions from sample entities. In: Proceed-
ings of the 20th ACM International Conference on Information and Knowl-
edge Management. pp. 1285–1294. CIKM ’11, Association for Computing Ma-
chinery, New York, NY, USA (2011). https://doi.org/10.1145/2063576.2063763,
https://doi.org/10.1145/2063576.2063763

9. Cambronero, J., Gulwani, S., Le, V., Perelman, D., Radhakrishna, A., Simon,
C., Tiwari, A.: Flashfill++: Scaling programming by example by cutting to the
chase. Proc. ACM Program. Lang. 7(POPL) (jan 2023). https://doi.org/10.1145/
3571226, https://doi.org/10.1145/3571226

10. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions. Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (2020)

11. Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A., Kohli, P.: Ro-
bustfill: Neural program learning under noisy I/O. In: Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017. pp. 990–998 (2017)

12. Fernau, H.: Algorithms for learning regular expressions from positive data. Infor-
mation and Computation 207(4), 521–541 (2009)

13. Firoiu, L., Oates, T., Cohen, P.: Learning regular languages from positive evidence.
In: Proceedings of the Twentieth Annual Conference of the Cognitive Science So-
ciety. pp. 350–355 (1998)

https://ieeexplore.ieee.org/document/6679385/
https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1145/3371124
https://doi.org/10.1145/3371124
https://doi.org/10.1145/3371124
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.18653/v1/D19-1639
https://doi.org/10.18653/v1/D19-1639
https://aclanthology.org/D19-1639
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3428295
https://doi.org/10.1145/2063576.2063763
https://doi.org/10.1145/2063576.2063763
https://doi.org/10.1145/2063576.2063763
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226

26 No Author Given

14. Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: Xtract: Learn-
ing document type descriptors from xml document collections. Data Min-
ing and Knowledge Discovery 7(1), 23–56 (2003). https://doi.org/10.1023/A:
1021560618289

15. GitHub: Github copilot - your ai pair programmer. https://copilot.github.com/
(2023)

16. Gold, E.M.: Language identification in the limit. Information and control 10(5),
447–474 (1967)

17. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. ACM Sigplan Notices 46(1), 317–330 (2011)

18. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free pro-
grams. SIGPLAN Not. 46(6), 62–73 (jun 2011). https://doi.org/10.1145/1993316.
1993506, https://doi.org/10.1145/1993316.1993506

19. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2), 100–107 (1968)

20. Lake, B., Salakhutdinov, R., Tenenbaum, J.: Human-level concept learning through
probabilistic program induction. Science 350(6266), 1332–1338 (Dec 2015). https:
//doi.org/10.1126/science.aab3050

21. Lau, T., Wolfman, S.A., Domingos, P., Weld, D.S.: Programming by Demonstration
Using Version Space Algebra. Machine Learning 53(1), 111–156 (2003)

22. Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for in-
troductory automata assignments. SIGPLAN Not. 52(3), 70–80 (oct 2016). https:
//doi.org/10.1145/3093335.2993244, https://doi.org/10.1145/3093335.2993244

23. Lee, W., Heo, K., Alur, R., Naik, M.: Accelerating search-based program syn-
thesis using learned probabilistic models. In: Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. pp.
436–449. PLDI 2018, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3192366.3192410, https://doi.org/10.1145/
3192366.3192410

24. Locascio, N., Narasimhan, K., DeLeon, E., Kushman, N., Barzilay, R.: Neu-
ral generation of regular expressions from natural language with minimal do-
main knowledge. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. pp. 1918–1923. Association for Computational
Linguistics, Austin, Texas (Nov 2016). https://doi.org/10.18653/v1/D16-1197,
https://aclanthology.org/D16-1197

25. Miltner, A., Maina, S., Fisher, K., Pierce, B.C., Walker, D., Zdancewic, S.:
Synthesizing symmetric lenses. Proc. ACM Program. Lang. 3(ICFP) (jul 2019).
https://doi.org/10.1145/3341699, https://doi.org/10.1145/3341699

26. OpenAI: Chatgpt. https://chat.openai.com/ (2023)
27. Polozov, O., Gulwani, S.: FlashMeta: A Framework for Inductive Program Syn-

thesis. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. pp. 107–
126 (2015)

28. Prasse, P., Sawade, C., Landwehr, N., Scheffer, T.: Learning to identify concise
regular expressions that describe email campaigns. J. Mach. Learn. Res. 16(1),
3687–3720 (2015)

29. Pu, Y., Ellis, K., Kryven, M., Tenenbaum, J.B., Solar-Lezama, A.: Program syn-
thesis with pragmatic communication. ArXiv abs/2007.05060 (2020)

https://doi.org/10.1023/A:1021560618289
https://doi.org/10.1023/A:1021560618289
https://doi.org/10.1023/A:1021560618289
https://doi.org/10.1023/A:1021560618289
https://copilot.github.com/
https://doi.org/10.1145/1993316.1993506
https://doi.org/10.1145/1993316.1993506
https://doi.org/10.1145/1993316.1993506
https://doi.org/10.1145/1993316.1993506
https://doi.org/10.1145/1993316.1993506
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.18653/v1/D16-1197
https://doi.org/10.18653/v1/D16-1197
https://aclanthology.org/D16-1197
https://doi.org/10.1145/3341699
https://doi.org/10.1145/3341699
https://doi.org/10.1145/3341699
https://chat.openai.com/

Efficient Bayesian Synthesis with Version Spaces 27

30. Ross, B.J.: Probabilistic pattern matching and the evolution of stochastic regular
expressions. Applied Intelligence 13(3), 285–300 (Nov 2000). https://doi.org/doi:
10.1023/A:1026524328760, http://www.cosc.brocku.ca/~bross/research/apin1303.
pdf

31. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
3 edn. (2010)

32. Singh, R.: Blinkfill: semi-supervised programming by example for syntactic string
transformations. Proceedings of the VLDB Endowment 9, 816–827 (06 2016).
https://doi.org/10.14778/2977797.2977807

33. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M., Alur,
R.: Transit: Specifying protocols with concolic snippets. SIGPLAN Not. 48(6),
287–296 (jun 2013). https://doi.org/10.1145/2499370.2462174, https://doi.org/10.
1145/2499370.2462174

34. Valizadeh, M., Berger, M.: Search-based regular expression inference on a gpu. In:
PLDI (2023)

35. Wang, X., Dillig, I., Singh, R.: Synthesis of data completion scripts using finite
tree automata. Proc. ACM Program. Lang. 1(OOPSLA) (oct 2017). https://doi.
org/10.1145/3133886, https://doi.org/10.1145/3133886

36. Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming bot-
nets: Signatures and characteristics. SIGCOMM Comput. Commun. Rev. 38(4),
171–182 (aug 2008). https://doi.org/10.1145/1402946.1402979, https://doi.org/10.
1145/1402946.1402979

37. Yang, Y., Huang, L., Ma, M.: Breaking the beam search curse: A study of (re-
)scoring methods and stopping criteria for neural machine translation (2018)

38. Zhang, T., Lowmanstone, L., Wang, X., Glassman, E.L.: Interactive Program Syn-
thesis by Augmented Examples, pp. 627–648. Association for Computing Machin-
ery, New York, NY, USA (2020), https://doi.org/10.1145/3379337.3415900

A Additional Experiments

A.1 Agreement with Human Listeners

Since our human speakers were prone to error and had an untested knowledge
of regular expressions, we do not know if our tool was unable to correctly infer
regexes due to an imperfect cost function or as a result of the examples provided
being fundamentally ambiguous . To gain more clarity, we inspect a more fine-
grained breakdown of Regex+’s performance compared to humans. The high
density of benchmarks in the diagonal in the first plot of Fig. 7 demonstrates that
Regex+’s ability to correctly or incorrectly infer regexes is highly correlated
with that of humans. This is consistent with the hypothesis that a large portion
of Regex+ incorrect results could be ascribed to faulty examples. For example,
row 1 in Tab. 3 illustrates a case where a speaker did not provide a single
example with an upper case letter making it difficult to infer [A-Z] from the
examples. Similarly, for row 2 one would not guess (\.)? since all of the speaker’s
examples had "." in them. On examples that humans were able to guess, and
thus can be confidently considered to be of good quality, Regex+ achieves
84% accuracy. Further, on examples that humans and Regex+ could not solve,
Regex+ matched humans examples 26% of the time (eg: rows 5 and 6) In cases

https://doi.org/doi:10.1023/A:1026524328760
https://doi.org/doi:10.1023/A:1026524328760
https://doi.org/doi:10.1023/A:1026524328760
https://doi.org/doi:10.1023/A:1026524328760
http://www.cosc.brocku.ca/~bross/research/apin1303.pdf
http://www.cosc.brocku.ca/~bross/research/apin1303.pdf
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3133886
https://doi.org/10.1145/1402946.1402979
https://doi.org/10.1145/1402946.1402979
https://doi.org/10.1145/1402946.1402979
https://doi.org/10.1145/1402946.1402979
https://doi.org/10.1145/3379337.3415900

28 No Author Given

Table 3: A sample of benchmarks illustrating agreement with human listeners
Ground Truth Examples Humans Bayes Simplicity

1 [a-zA-Z][0-9]{5}
q92837

j62910
[a-z][0-9]{5} [a-z][0-9]{5} [a-z][0-9]+

2 [0-9](\.)?[0-9]

1.

1.1234

1.1111

1.12345

3.1234

4.5

[0-9]\.[0-9]* [0-9]\.[0-9]* [0-9]\.[0-9]*

3 [0-9]{2}\.5

45.5

01.5

99.5

[0-9]{2}\.[0-9] [0-9]{2}\.5 [0-9]+\.[0-9]+

4 [0-9]{6}

928365

657483

019284

[0-9]+ [0-9]{6} [0-9]+

Fig. 7: Confusion matrices that show the breakdown of the number benchmarks
achieved by system v.s humans. Separate matrices are shown for the Bayesian
approach, simplicity only ablation and specificity only ablation. The cell that
indicates benchmarks that both humans and system got wrong also contains
a percentage for benchmarks that both humans and system guessed the same
answer.

where Regex+ got the example correct and humans did not, humans tended to
be more general than Regex+. In row 3 of Tab. 3, a listener failed to identify
the ’.5’ and in row 4 the listener either did not see that all examples had 6
digits or did not consider it important enough. It is hard to determine whether
the unnecessary generality of these guesses was a result of careless or some other
cognitive bias. While the underlying cause is beyond the scope of this paper, this
observed pattern could explain the 24% agreement on the benchmarks that both
humans and simplicity ablation got wrong. Nonetheless, as seen in Fig. 7, neither
of the ablations demonstrated as dense a diagonal as Regex+, consistent with
the conjecture that humans leverage both specificity and simplicity to reason
about regular expressions.

	Efficient Bayesian Synthesis with Version Spaces

